

PCH/new Series High performance, total flexibility

PCH/new Installation in Air Handling Unit example

Capacity Range five models from 20 kw to 420kw

NOx lower that 30 ppm : Class 5

Very Low Emissions

Automatic Control

Electonic ignition and Simple elettrical connection

Fine Tuning

Standard Power level managed by 0 - 10 volts control input from air handling unit

Extended Modulation Standard continuous modulation from 100% to 20%

ApenGroup aermaxine

PCH/new

Condensing Gas Heating Modules for Air Handling Units and Rooftops

New Gas Modules PCH/new present an extended power range which goes from 20 kW to 420 kW.


This result is achieved thanks to the possibility to assemble standard modules in parallel configuration. You can choose between three gas module configuration:

A system: Single modules with max power between 20 kW to 105 kW.

B system: Combined modules with horizontal /vertical parallel combination with max power between 130 kW to 420 kW.

C system: Combined modules with horizontal parallel combination with max power between 132 kW to 412 kW.

This complete product range is able to satisfy all heating needs of your air handling units and Roof Top packaged systems.

PCH/new CAD rendering of Combustion Chamber and Heat Exchangers, premix burner and electronic board controls

PCH/new: gas condensing energy modules

EFFICIENCY UP TO 109%

Apen Group has designed and developed PCH/new heating modules for installation in air handling and roof-top units. PCH module is built with environment-friendly, totally recyclable materials, such as stainless steel and aluminium. The heat produced using PCH module's "clean combustion" is earth-friendly and convenient. A microprocessor-based device controls continuous modulation of thermal power output and adjusts it to heat requirements. When modulation of heat output is enabled, an advanced regulating device installed on the main burner monitors and adjusts flow rates of combustion air and gas.

CLEAN COMBUSTION

PCH /new condensation modules are equipped with burners that fully premix air and gas. Moreover, a regulating device of heat output is installed. This results in: - NO emissions of carbon monoxide (CO = 0); - Very low emission of nitrogen oxides, below 30 parts per million (NOx < 30 ppm); - Low emission of carbon dioxide, due to high combustion efficiency (109%) and to reduction of fuel consumption arising from heat output modulation.

UNDIRECT HEAT EXCHANGE

The heat produced PCH is directly transferred to ambient air through undirect exchange with combustion products. These products flow inside a sealed system, totally separated from the air heated for environment.

No intermediate fluid is required, so the hydraulic circuit is unnecessary and water freezing becomes an out-of-date issue.

A few minutes are enough for the environment to warm up thanks to the absence of thermal inertia.

NO NEED FOR A WATER BATTERY AND BOILER HEAT PLANT

- Savings on plant building cost (boiler, burner, pumps, safety and regulation devices, masonry work); -Less space is required (units are smaller and require less

clearance);

-No need for plant certification (our PCH module is already fully certified).

PCH/new Features

HEAT EXCHANGER

Furnace and air/flue exchanger are entirely built with stainless steel (with low carbon content) AISI 441 and 430 which assures maximum reliability and long life cycle.

The new cylinder shaped furnace and the air/flue exchangers, whose tube bundle is custom designed, guarantee performance that place PCH/new modules among the leading units for heat efficiency, with an outstanding value of 109%.

ApenGroup

PREMIX BURNER

The burner is entirely made of AISI 430 steel and undergoes specific engineering processing that guarantee top reliability and high thermal-mechanical performance.

SAFETY AND CONTROL DEVICES

The following devices are installed on PCH modules: 1. Safety thermostat with manual reset and positive safety;

 2. Electronic ignition device for the burner and ionization flame control device;
3. Ignition and flame detection

electrodes.

lity output and controls both the ical electrical fan for air/gas mixing

AIR/GAS MIXING: GUARANTEED SAFETY

and the gas valve.

ELECTRONIC CART

The microprocessor-based

continuous modulation of heat

electronic card regulates

An advanced technique of air/gas mixing guarantees total safety. The gas valve delivers gas according to the air/gas ratio set at the premises. If combustion air fails, the gas valve shuts up. If combustion air decreases, the valve automatically reduces gas flow while maintaining optimal combustion parameters.

CAD DRAWINGS

When ordering a PCH/new module, ask for its size drawings. We supply drawings in 3D CAD format to ease your assembling work of the PCH module into your installation!

GAS DIRECTIVE CERTIFICATION

Technical features of PCH module have been thoroughly checked and tested, then they been approved and certified by KIWA GASTEC, the respected and renowned Body for European Certification. By assigning to PCH module the approval number 0694CP1457, KIWA GASTEC has certified that this modules comply with the following Directives:

- 90/396/EEC - Directory on appliances burning gaseous fuels.

- 90/392/EEC - Machinery Directive.

- 72/23/EEC - Low Voltage Directive.

- 89/336/EEC - Directive on Electromagnetic Compatibility.

PCH/new Technical Data (A system)

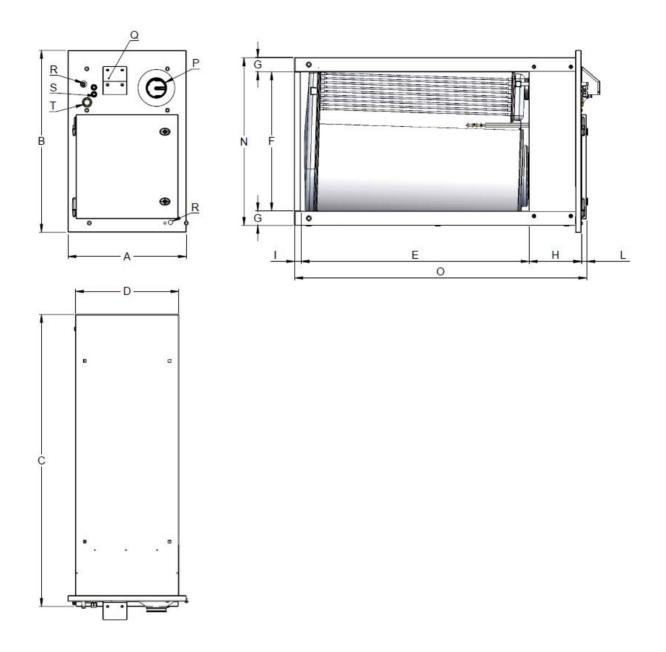
Model		PCH	1020	PCH	1034	PCH	045	PCH	065	РСН	080	PCH	1105
Type of appliance					Bź	23P - B53	P - C13 - (C43 - C53	- C63 - C	83			
CE approval	PIN.						06940	CP1457					
NOx class	Val							5					
		min	max	min	max	min	max	min	max	min	max	min	max
Rated thermal input (hi)	kW	4,8	19	7,6	34,90	8,5	44	12,4	65	16,4	82	18	100
Rated thermal output	kW	5	18,2	8,1	33,6	9	42,8	13,4	62,9	17,8	80	19,6	97,2
Efficiency hi (p.C.I)	%	104,7	95,7	106,9	96,3	105,5	96,4	108,1	96,8	108,3	97,6	109,1	97,2
Efficiency hs (p.C.S)	%	94,3	86,2	93,3	86,8	95,1	86,9	97,4	87,2	97,6	87,9	98,3	87,6
Chimney loss - burner ON (hi)	%	0,4	4,3	0,6	3,7	0,5	3,6	0,2	3,2	0,3	2,4		2,8
Chimney loss - burner OFF (hi)	%	<0,1		<0,1		<0,1		<0,1		<0,1		<0,1	
Casing heat loss (1)		0	%	0	%	0	%	0%		0%		0%	
Max. Condensation produced (2)	l/h	0	,4	0),9	1	,1	2,1		3,3		2	,7
Carbon monoxide CO (0% di O_2) (3)	ppm	5	0	4	0	3	0	2	0	2	0	0	2
Nitrogen oxides - NOx - (0% di 0 ₂) (4)	mg/kWh	40		41		35		4	0	3	4	4	15
Available flue pressure	Pa	80		90		100		120		120		12	20
Power supply	V					230	Vac - 50	hz monop	hase				
Power absorbed	W	12	45	11	74	24	82	15	97	40	123	20	130
Power absorbed in stand by	W							5					
IP protection	IP						IP 2	K5D					
Working temperature	°C	F	rom -15°c	to +40°c	c - (for low	er tempa	ratures o	rder heat	ing burne	r box elec	trical res	istance ki	t)
Ø Gas connection	GAS	UNI/ISC) 7/1-3/4"	UNI/ISC) 7/1-3/4"	UNI/ISO	7/1-3/4"	UNI/ISC	7/1-3/4"	UNI/IS	0 7/1-1"	UNI/IS	0 7/1-1"
Ø of air inlet/exhaust pipes	mm	80	/80	80	/80	80,	/80	80,	/80	80,	/80	80	/80
Minimum air flow (5)	m³/h	19	00	21	00	26	00	3100		42	00	54	00
Max applicable pressure	Pa	1.2	00	1.2	200	1.200		1.200		1.200		1.200	
Net weight	kg	3	9	4	18	58		72		98		118	

NOTE:


(1) The casing heat losses are the same as those of the machine which contains the PCH.

(2) Max. Condensation produced value obtained by test at 30% Nominal load (Qn).

(3) Value reference with gas cat. H (G20).


(4) Value (statistical medium calculation) EN1020 reference gas cat. H (G20).

(5) Minimun air flow has been calculated for a -t value of 50°C, which is suitable for process plants or special applications.

PCH/new Dimensions (A system)

Model	A (3)	B (3)	C (2)	D (1)	E (1)	F (1)	G (2)	H (1)	 (2)	L (2)	M (2)	N (2)	0 (2)	P (1)	Q (1)	R (1)	S (1)	T (1)
PCH020		720	728		450	534							728					
PCH034			120	968		690	534						660	968				
PCH045	514	790	900	449	690	604	63	228	28	22		730	900	Ø 80	Ø 80	3/8'' GAS	2X	GAS
PCH065	514	790	1268	449	990				20	22		130	1268	0.00	000		Ø 21	
PCH080		875	1459		1181	689						815	1459					1''
PCH105		0/5	1689		1411								1689					GAS

Dimensions(mm)

PCH/new Technical Data (B system)

Model		PCH	1130	PCH	1160	PC	1210	PCH	1320	PC	1420
Type of appliance					B23P - B5	53P - C13 - 0	C43 - C53 - (C63 - C83			
CE approval	PIN.					06940	CP1457				
NOx class	Val						5				
		min	max	min	max	min	max	min	max	min	max
Rated thermal input (hi)	kW	12,4	130,0	16,4	164,0	18,0	200,0	18,0	300,0	18,0	400,0
Rated thermal output	kW	13,4	125,8	17,8	160,0	19,6	194,4	19,6	291,6	19,6	388,8
Efficiency hi (p.C.I)	%	108,1	96,8	108,3	97,6	109,1	97,2	109,1	97,2	109,1	97,2
Efficiency hs (p.C.S)	%	97,4	87,2	97,2	87,9	98,3	87,6	98,3	87,6	98,3	87,6
Chimney loss - burner ON (hi)	%	0,2	3,2	0,3	2,4		2,8		2,8		2,8
Chimney loss - burner OFF (hi)	%	<(D,1	<(D,1	<(0,1	<0,1		<0,1	
Casing heat loss (1)		0	%	0	%	0	%	0%		C)%
Max. Condensation produced (2)	l/h	4	,2	6	,6	5,4		8,1		10,8	
Carbon monoxide CO (0% di O_2) (3)	ppm	2	0	2	0	0	2	0	2	0	2
Nitrogen oxides - NOx - (0% di 0 ₂) (4)	mg/kWh	40		34		45		45		4	45
Available flue pressure	Pa	12	20	12	20	12	20	120		1	20
Power supply	V				23	0 Vac - 50	hz monopha				
Power absorbed	W	30	194	80	246	40	260	60	390	80	520
Power absorbed in stand by	W						5				
IP protection	IP					IP 2	X5D				
Working temperature	°C	Fro	m -15°c to -	+40°c - (for	lower temp	oaratures o	rder heating	g burner bo	ox electrical	resistance	e kit)
Ø Gas connection	GAS	UNI/IS	0 7/1- 1"	UNI/ISC) 7/1- 11/2"	UNI/ISC) 7/1- 1½"	UNI/ISC) 7/1- 1½"	UNI/IS	60 7/1- 2"
Ø of air inlet/exhaust pipes	mm	80	/80	80,	/80	80	/80	80	/80	80)/80
Minimum air flow (5)	m³/h	62	00	84	00	10800		16200		21	600
Max applicable pressure	Pa	1.2	00	1.2	00	1.200		1.200		1.200	
Net weight	kg	15	54	20	06	250		375		500	

NOTE:

(1) The casing heat losses are the same as those of the machine which contains the PCH.

(2) Max. Condensation produced value obtained by test at 30% Nominal load (Qn).

(3) Value reference with gas cat. H (G20).


(4) Value (statistical medium calculation) EN1020 reference gas cat. H (G20).

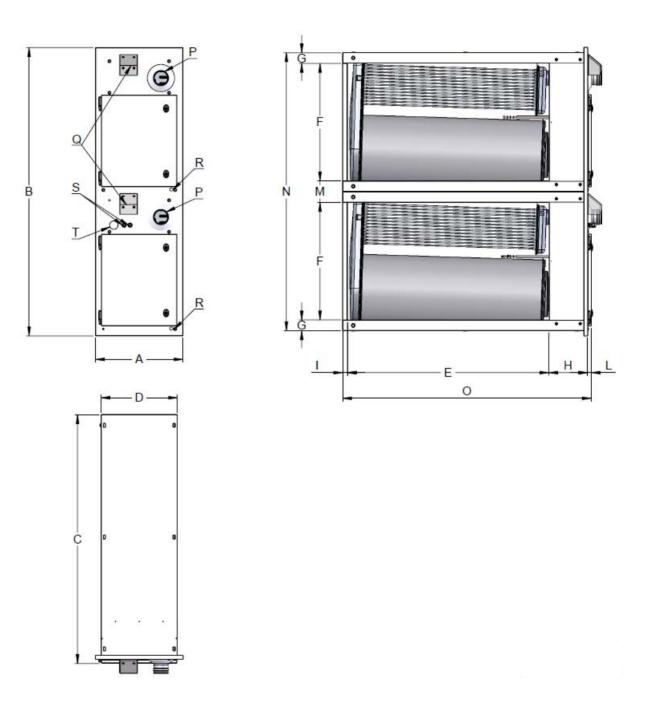
(5) Minimun air flow has been calculated for a -t value of 50°C, which is suitable for process plants or special applications.

PCH/new Dimensions (B system)

Model	A (3)	B (3)	C (2)	D (1)	E (1)	F (1)	G (2)	H (1)	l (2)	L (2)	M (2)	N (2)	0 (2)	P (1)	Q (1)	R (1)	S (1)	T (1)
PCH130															2X Ø 80			
PCH160		1110	1468		1191							1049	1469	2X Ø 80		2X 3/8'' GAS		
PCH210		mo				398	63	228	28	22	127	1049					3X Ø 21	11⁄2'' GAS
PCH320	890 1787	1787	1698	825	1421							1574	1699	3X Ø 80	3X Ø 80	3X 3/8" GAS		CHO
PCH420		2360										2099		4X Ø 80	4X Ø 80	4X 3/8'' GAS	4X Ø 21	

Dimensions(mm)

PCH/new Technical Data (C system)


Model		PCH	132	PCF	162	PCH212		
Type of appliance			B23P - B5	53P - C13 - C	C43 - C53 -	C63 - C83		
CE approval	PIN.			06940	CP1457			
NOx class	Val			ļ	5			
		min	max	min	max	min	max	
Rated thermal input (hi)	kW	12,4	130,0	16,4	164,0	18,0	200,0	
Rated thermal output	kW	13,4	125,8	17,8	160,0	19,6	194,4	
Efficiency hi (p.C.I)	%	108,1	96,8	108,3	97,6	109,1	97,2	
Efficiency hs (p.C.S)	%	97,4	87,2	97,6	87,9	98,3	87,6	
Chimney loss - burner ON (hi)	%	0,3	3,2	0,3	2,4		2,8	
Chimney loss - burner OFF (hi)	%	<(D,1	<(D,1	<0,1		
Casing heat loss (1)		0	%	0	%	0%		
Max. Condensation produced (2)	l/h	4	,2	6	,6	5	,4	
Carbon monoxide CO (0% di O_2) (3)	ppm	2	0	2	0	0	2	
Nitrogen oxides - NOx - (0% di 0 ₂) (4)	mg/kWh	4	0	3	4	4	15	
Available flue pressure	Pa	12	20	12	20	120		
Power supply	V		23	0 Vac - 50 I	nz monopha	ase		
Power absorbed	W	30	194	80	246	40	260	
Power absorbed in stand by	W			l.	5			
IP protection	IP			IP >	(5D			
Working temperature	°C			From -15°c lower temp Irner box el				
Ø Gas connection	GAS	UNI/IS	0 7/1- 1"	UNI/ISC	7/1- 11/2"	UNI/ISC) 7/1- 1½"	
Ø of air inlet/exhaust pipes	mm	80	/80	80,	/80	80/80		
Minimum air flow (5)	m³/h	62	00	84	00	10800		
Max applicable pressure	Pa	1.2	00	1.2	00	1.200		
Net weight	kg	14	18	20	00	24	40	

NOTE: (1) The casing heat losses are the same as those of the machine which contains the PCH. (2) Max. Condensation produced value obtained by test at 30% Nominal load (Qn). (3) Value reference with gas cat. H (G2O). (4) Value (statistical medium calculation) EN1020 reference gas cat. H (G2O). (5) Minimun air flow has been calculated for a -t value of 50°C, which is suitable for process plants or special applications.

ApenGroup aermaxline

PCH/new Dimensions (C system)

Dimensions(mm)

Model	A (3)	B (3)	C (2)	D (1)	E (1)	F (1)	G (2)	H (1)	l (2)	L (2)	M (2)	N (2)	0 (2)	P (1)	Q (1)	R (1)	S (1)	T (1)
PCH132		1520	1268		990	604	63	228	28	22	127	1461	1268					
PCH162	514	1600	1459	449	1181	(00						1601	1459	2X Ø 80	2X Ø 80	2X 3/8'' GAS	2X Ø 21	1'' GAS
PCH212	169	1690	1703		1411	689						1631	1689					

ApenGroup

APEN GROUP S.p.A. 20060 Pessano con Bornago (MI) - Italy Via Isonzo, 1 (ex Via Provinciale, 85) Phone +39-02-95.96.93.1 Fax +39-02-95.74.27.58 www.apengroup.com apen@apengroup.com

Cod. HG0106.11GB ed 1403 - Specifications in this marketing catalogue are subject to change without notice, require technical istruction manual for specific desing purpouse.